Topological multiband s-wave superconductivity in coupled multifold fermions

Topological multiband s-wave superconductivity in coupled multifold fermions

Published 29 December 2021

Changhee Lee, Chiho Yoon , Taehyeok Kim, Suk Bum Chung, and Hongki Min

Physical Review B 104.24 (2021): L241115.

Abstract

We study three-dimensional time-reversal-invariant topological superconductivity in noncentrosymmetric materials such as RhSi, CoSi, and AlPt which host coupled multifold nodes energetically split by the spin-orbit coupling at the same time-reversal-invariant momentum (TRIM). The topological superconductivity arises from the s+ ⊕ s− gap function, which is k independent, but with opposite signs for the two nodes split at the same TRIM. We consider various electron-electron interactions in the tight-binding model for RhSi and find that the topological superconducting phase supporting a surface Majorana cone and topological nodal rings is favored in a wide range of interaction parameters.

More details from the publisher >